کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407849 678236 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-supervised classification with pairwise constraints
ترجمه فارسی عنوان
طبقه بندی نیمه نظارت شده با محدودیت های جفتی
کلمات کلیدی
یادگیری نیمه نظارتی، محدودیت های پویا، تنظیم کننده صاف بودن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Graph-based semi-supervised learning has been intensively investigated for a long history. However, existing algorithms only utilize the similarity information between examples for graph construction, so their discriminative ability is rather limited. In order to overcome this limitation, this paper considers both similarity and dissimilarity constraints, and constructs a signed graph with positive and negative edge weights to improve the classification performance. Therefore, the proposed algorithm is termed as Constrained Semi-supervised Classifier (CSSC). A novel smoothness regularizer is proposed to make the “must-linked” examples obtain similar labels, and “cannot-linked” examples get totally different labels. Experiments on a variety of synthetic and real-world datasets demonstrate that CSSC achieves better performances than some state-of-the-art semi-supervised learning algorithms, such as Harmonic Functions, Linear Neighborhood Propagation, LapRLS, LapSVM, and Safe Semi-supervised Support Vector Machines.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 139, 2 September 2014, Pages 130–137
نویسندگان
, , , , ,