کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407855 678236 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extended biologically inspired model for object recognition based on oriented Gaussian–Hermite moment
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Extended biologically inspired model for object recognition based on oriented Gaussian–Hermite moment
چکیده انگلیسی

Hierarchical Model and X (HMAX) presents a biologically inspired model for robust object recognition. The HMAX model, based on the mechanisms of the visual cortex, can be described as a four-layer structure. Although the performance of HMAX in object recognition is robust, it has been shown to be sensitive to rotation, which limits the model׳s performance. To alleviate this limitation, we propose an Oriented Gaussian–Hermite Moment-based HMAX (OGHM-HMAX). In contrast to HMAX which uses a Gabor filter for local feature representation, OGHM-HMAX employs the Oriented Gaussian–Hermite Moment (OGHM), which is a local representation method that represents features and is robust against distortions. OGHM is an extension of the modified discrete Gaussian–Hermite moment (MDGHM). To show the effectiveness of the proposed method, experimental studies on object categorization are conducted on the CalTech101, CalTech5, Scene13 and GRAZ01 databases. Experimental results demonstrate that the performance of OGHM-HMAX is a significant improvement on that of the conventional HMAX.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 139, 2 September 2014, Pages 189–201
نویسندگان
, , , , ,