کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
407896 | 678237 | 2013 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Frequency domain approach to computational analysis of bifurcation and periodic solution in a two-neuron network model with distributed delays and self-feedbacks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a general two-neuron model with distributed delays, self-feedbacks and a weak kernel is studied. It is shown that the Hopf bifurcation occurs as the bifurcation parameter, the mean delay, passes a critical value where a family of periodic solutions emanate from the equilibrium. By applying the frequency domain approach and analyzing the associated characteristic equation, the existence of the bifurcation critical point of the mean delay is determined. The direction and the stability of bifurcating periodic solutions are determined by the Nyquist criterion and the graphical Hopf bifurcation theorem. Numerical simulation results supporting the theoretical analysis are also given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 99, 1 January 2013, Pages 206–213
Journal: Neurocomputing - Volume 99, 1 January 2013, Pages 206–213
نویسندگان
Min Xiao, Wei Xing Zheng, Jinde Cao,