کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407919 678237 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced and parameterless Locality Preserving Projections for face recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Enhanced and parameterless Locality Preserving Projections for face recognition
چکیده انگلیسی

In this paper, we address the graph-based linear manifold learning method for object recognition. The proposed method is called enhanced Locality Preserving Projections. The main contribution is a parameterless computation of the affinity matrix that draws on the notion of meaningful and adaptive neighbors. It integrates two interesting properties: (i) being entirely parameter-free and (ii) the mapped data are uncorrelated. The proposed method has been integrated in the framework of three graph-based embedding techniques: Locality Preserving Projections (LPP), Orthogonal Locality Preserving Projections (OLPP), and supervised LPP (SLPP). Recognition tasks on six public face databases show an improvement over the results of LPP, OLPP, and SLPP. The proposed approach could also be applied to other category of objects.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 99, 1 January 2013, Pages 448–457
نویسندگان
, ,