کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407942 678238 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Column subset selection for active learning in image classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Column subset selection for active learning in image classification
چکیده انگلیسی

Image classification is an important task in computer vision and machine learning. However, it is known that manually labeling images is time-consuming and expensive, but the unlabeled images are easily available. Active learning is a mechanism which tries to determine which unlabeled data points would be the most informative (i.e., improve the classifier the most) if they are labeled and used as training samples. In this paper, we introduce the idea of column subset selection, which aims to select the most representation columns from a data matrix, into active learning and propose a novel active learning algorithm, column subset selection for active learning (CSSactive). CSSactive selects the most representative images to label, then the other images are reconstructed by these labeled images. The goal of CSSactive is to minimize the reconstruction error. Besides, most of the previous active learning approaches are based on linear model, and hence they only consider linear functions. Therefore, they fail to discover the intrinsic geometry in images when the image space is highly nonlinear. Therefore, we provide a kernel-based column subset selection for active learning (KCSSactive) algorithm which performs the active learning in Reproducing Kernel Hilbert Space (RKHS) instead of the original image space to address this problem. Experimental results on Yale, AT&T and COIL20 data sets demonstrate the effectiveness of our proposed approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 18, November 2011, Pages 3785–3792
نویسندگان
, , , , , , ,