کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408148 678250 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure
ترجمه فارسی عنوان
روش تشخیص خطای آنلاین براساس توضیحات داده های بردار افزایشی و دستگاه یادگیری افراطی با ساختار خروجی افزایشی است
کلمات کلیدی
توضیحات پشتیبانی افزوده پشتیبانی، ماشین آموزش عالی تجزیه و تحلیل مولفه اصلی چند مقیاس، تشخیص خطا آنلاین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Online fault diagnosis system should be able to detect faults, recognize fault types and update the discriminating ability and knowledge of itself automatically in real time. But the class number in fault diagnosis is not constant and it is in a dynamic state with new members enrolled. The traditional recognition algorithms are not able to update diagnosis system efficiently when the class number of failure modes is increasing. To solve the problem, an online fault diagnosis method based on Incremental Support Vector Data Description (ISVDD) and Extreme Learning Machine with incremental output structure (IOELM) is proposed. ISVDD is used to find a new failure mode quickly in the continuous condition monitoring of the equipments. The fixed structure of Extreme Learning Machine is changed into an elastic structure whose output nodes could be added incrementally to recognize the new fault mode efficiently. Recognition experiments on the diesel engine under eleven different conditions show that the online fault diagnosis method based on ISVDD and IOELM works well, and the method is also feasible in fault diagnosis of other mechanical equipments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 128, 27 March 2014, Pages 224–231
نویسندگان
, , , , ,