کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408372 679025 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
IG-based genetically optimized fuzzy polynomial neural networks with fuzzy set-based polynomial neurons
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
IG-based genetically optimized fuzzy polynomial neural networks with fuzzy set-based polynomial neurons
چکیده انگلیسی

In this study, we introduce and investigate a new topology of fuzzy-neural networks—fuzzy polynomial neural networks (FPNN) that is based on a genetically optimized multiplayer perceptron with fuzzy set-based polynomial neurons (FSPNs). We also develop a comprehensive design methodology involving mechanisms of genetic optimization and information granulation. In the sequel, the genetically optimized FPNN (gFPNN) is formed with the use of fuzzy set-based polynomial neurons (FSPNs) composed of fuzzy set-based rules through the process of information granulation. This granulation is realized with the aid of the C-means clustering (C-Means). The design procedure applied in the construction of each layer of an FPNN deals with its structural optimization involving the selection of the most suitable nodes (or FSPNs) with specific local characteristics (such as the number of input variable, the order of the polynomial, the number of membership functions, and a collection of specific subset of input variables) and address main aspects of parametric optimization. Along this line, two general optimization mechanisms are explored. The structural optimization is realized via genetic algorithms (GAs) and HCM method whereas in case of the parametric optimization we proceed with a standard least square estimation (learning). Through the consecutive process of structural and parametric optimization, a flexible neural network is generated in a dynamic fashion. The performance of the designed networks is quantified through experimentation where we use two modeling benchmarks already commonly utilized within the area of fuzzy or neurofuzzy modeling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 2783–2798
نویسندگان
, , , ,