کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408383 | 679025 | 2007 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Design and comparison of adaptive power system stabilizers based on neural fuzzy networks and genetic algorithms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents two different power system stabilizers (PSSs) which are designed making use of neural fuzzy network and genetic algorithms (GAs). In both cases, GAs tune a conventional PSS on different operating conditions and then, the relationship between these points and the PSS parameters is learned by the ANFIS. ANFIS will select the PSS parameters based on machine loading conditions. The first stabilizer is adjusted minimizing an objective function based on ITAE index, while second stabilizer is adjusted minimizing an objective function based on pole-placement technique. The proposed stabilizers have been tested by performing simulations of the overall nonlinear system. Preliminary experimental results are shown.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 2902–2912
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 2902–2912
نویسندگان
Jesús Fraile-Ardanuy, P.J. Zufiria,