کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408393 679025 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recurrent fuzzy network design using hybrid evolutionary learning algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Recurrent fuzzy network design using hybrid evolutionary learning algorithms
چکیده انگلیسی

This paper proposes a recurrent fuzzy network design using the hybridization of a multigroup genetic algorithm and particle swarm optimization (R-MGAPSO). The recurrent fuzzy network designed here is the Takagi–Sugeno–Kang (TSK)-type recurrent fuzzy network (TRFN), in which each fuzzy rule comprises spatial and temporal sub-rules. Both the number of fuzzy rules and the parameters in a TRFN are designed simultaneously by R-MGAPSO. In R-MGAPSO, the techniques of variable-length individuals and the local version of particle swarm optimization are incorporated into a genetic algorithm, where individuals with the same length constitute the same group, and there are multigroups in a population. Population evolution consists of three major operations: elite enhancement by particle swarm optimization, sub-rule alignment-based crossover, and mutation. To verify the performance of R-MGAPSO, dynamic plant and a continuous-stirred tank reactor controls are simulated. R-MGAPSO performance is also compared with genetic algorithms in these simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 3001–3010
نویسندگان
, ,