کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408879 | 679047 | 2008 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Identifying community structure in complex networks is closely related to clustering of data in other areas without an underlying network structure. In this paper, we propose a nonnegative matrix factorization (NMF)-based method for finding community structure. We first evaluate several similarity measures, such as diffusion kernel similarity, shortest path based similarity on several widely well-studied networks. Then, we apply NMF with diffusion kernel similarity to a large biological network, which demonstrates that our method can find biologically meaningful functional modules. Comparison with other algorithms also indicates the good performance of our method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 1–3, December 2008, Pages 134–141
Journal: Neurocomputing - Volume 72, Issues 1–3, December 2008, Pages 134–141
نویسندگان
Rui-Sheng Wang, Shihua Zhang, Yong Wang, Xiang-Sun Zhang, Luonan Chen,