کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
409116 | 679053 | 2008 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Synaptic plasticity model of a spiking neural network for reinforcement learning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a reward-related synaptic modification method of a spiking neuron model. The proposed algorithm determines which synapse is eligible for reinforcement by a reward signal. According to the proposed algorithm, a synapse is determined to be eligible when a presynaptic spike occurs shortly before a postsynaptic spike. A pre- and postsynaptic spike correlator (PPSC) is defined and used to determine synaptic eligibility, and to modify synaptic efficacy in cooperation with a reward signal. A simulation is conducted to demonstrate how the interaction between the PPSC and the reward signal influences synaptic plasticity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 13–15, August 2008, Pages 3037–3043
Journal: Neurocomputing - Volume 71, Issues 13–15, August 2008, Pages 3037–3043
نویسندگان
Kyoobin Lee, Dong-Soo Kwon,