کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409319 679067 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimized projections for sparse representation based classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Optimized projections for sparse representation based classification
چکیده انگلیسی

Dimensionality reduction (DR) methods have been commonly used as a principled way to understand the high-dimensional data such as facial images. In this paper, we propose a new supervised DR method called Optimized Projections for Sparse Representation based Classification (OP-SRC), which is based on the recent face recognition method, Sparse Representation based Classification (SRC). SRC seeks a sparse linear combination on all the training data for a given query image, and makes the decision by the minimal reconstruction residual. OP-SRC is designed on the decision rule of SRC, it aims to reduce the within-class reconstruction residual and simultaneously increase the between-class reconstruction residual on the training data. The projections are optimized and match well with the mechanism of SRC. Therefore, SRC performs well in the OP-SRC transformed space. The feasibility and effectiveness of the proposed method is verified on the Yale, ORL and UMIST databases with promising results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 113, 3 August 2013, Pages 213–219
نویسندگان
, ,