کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409516 679074 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Error modeling approach to improve time series forecasters
ترجمه فارسی عنوان
خطای مدل سازی رویکرد برای پیش بینی عوامل سری زمانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In time series forecasting exercises it has been usual to suppose that the error series generated by the forecasters have a white noise behavior. However, it is possible that such supposition is violated in practice due to model misspecification or disturbances of the phenomenon not captured by the predictive models. It may lead to statistically biased and/or inefficient predictors. The present paper introduces an approach to correct predetermined forecasters by recursively modeling their remaining residuals. Two formalisms are used to illustrate the recursive approach: the well-known (linear) autoregressive integrated moving average (ARIMA) and the (non-linear) Artificial Neural Network (ANN). These models are recursively adjusted to the remaining residuals of a given forecaster until a white noise behavior is achieved. Applications involving ARIMA and ANN forecasters for Dow Jones Industrial Average Index, S&P500 Index, Google Stock Value, Nasdaq Index, Wolf׳s Sunspot, and Canadian Lynx data series indicate the usefulness of the proposed framework.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 153, 4 April 2015, Pages 242–254
نویسندگان
, , ,