کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409653 679080 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Outlier-robust extreme learning machine for regression problems
ترجمه فارسی عنوان
دستگاه یادگیری افراطی قوی و بی نظیر برای مشکلات رگرسیون
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Extreme learning machine (ELM), as one of the most useful techniques in machine learning, has attracted extensive attentions due to its unique ability for extremely fast learning. In particular, it is widely recognized that ELM has speed advantage while performing satisfying results. However, the presence of outliers may give rise to unreliable ELM model. In this paper, our study addresses the outlier robustness of ELM in regression problems. Based on the sparsity characteristic of outliers, this work proposes an outlier-robust ELM where the ℓ1-norm loss function is used to enhance the robustness. Specially, the fast and accurate augmented Lagrangian multiplier method is applied to guarantee the effectiveness and efficiency. According to the experiments on function approximation and some real-world applications, the proposed approach not only maintains the advantages from original ELM, but also shows notable and stable accuracy in handling data with outliers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 151, Part 3, 3 March 2015, Pages 1519–1527
نویسندگان
, ,