کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409712 679086 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robustness and generalization for metric learning
ترجمه فارسی عنوان
ثبات و تعمیم برای یادگیری متریک
کلمات کلیدی
یادگیری متریک، استحکام الگوریتمی، مرزبندی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Metric learning has attracted a lot of interest over the last decade, but the generalization ability of such methods has not been thoroughly studied. In this paper, we introduce an adaptation of the notion of algorithmic robustness (previously introduced by Xu and Mannor) that can be used to derive generalization bounds for metric learning. We further show that a weak notion of robustness is in fact a necessary and sufficient condition for a metric learning algorithm to generalize. To illustrate the applicability of the proposed framework, we derive generalization results for a large family of existing metric learning algorithms, including some sparse formulations that are not covered by the previous results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 151, Part 1, 3 March 2015, Pages 259–267
نویسندگان
, ,