کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409858 679101 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-Euclidean principal component analysis by Hebbian learning
ترجمه فارسی عنوان
تجزیه و تحلیل مولفه های غیر اقلیدسی توسط یادگیری هببین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Principal component analysis based on Hebbian learning is originally designed for data processing in Euclidean spaces. We present in this contribution an extension of Oja׳s Hebbian learning approach for non-Euclidean spaces. We show that for Banach spaces the Hebbian learning can be carried out using the underlying semi-inner product. Prominent examples for such Banach spaces are the lp-spaceslp-spaces for p≠2p≠2. For kernels spaces, as applied in support vector machines or kernelized vector quantization, this approach can be formulated as an online learning scheme based on the differentiable kernel. Hence, principal component analysis can be explicitly carried out in the respective data spaces but now equipped with a non-Euclidean metric. In the article we provide the theoretical framework and give illustrative examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 147, 5 January 2015, Pages 107–119
نویسندگان
, , ,