کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409876 679101 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noise-free representation based classification and face recognition experiments
ترجمه فارسی عنوان
طبقه بندی مبتنی بر نمایندگی بدون سر و صدا و آزمایش های تشخیص چهره
کلمات کلیدی
حذف صدا، طبقه بندی مبتنی بر نمایندگی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The representation based classification has achieved promising performance in high-dimensional pattern classification problems. As we know, in real-world applications the samples are usually corrupted by noise. However, representation based classification can take only noise in the test sample into account and is not able to deal with noise in the training sample, which causes side-effect on the classification result. In order to make the representation based classification more suitable for real-world applications such as face recognition, we propose a new representation based classification method in this paper. This method can effectively and simultaneously reduce noise in the test and training samples. Moreover, the proposed method can reduce noise in both the original and virtual training samples and then exploits them to determine the label of the test sample. The virtual training sample is generated from the original face image and shows possible variation of the face in scale, facial pose and expression. The experimental results show that the proposed method performs very well in face recognition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 147, 5 January 2015, Pages 307–314
نویسندگان
, , , , ,