کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410046 679117 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A clonal selection based approach to statistical brain voxel classification in magnetic resonance images
ترجمه فارسی عنوان
رویکرد مبتنی بر انتخاب کلونال به طبقه بندی آماری مغز ووشل در تصاویر رزونانس مغناطیسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Statistical classification of voxels in brain magnetic resonance (MR) images into major tissue types plays an important role in neuroscience research and clinical practices, in which model estimation is an essential step. Despite their prevalence, traditional techniques, such as the expectation–maximization (EM) algorithm and genetic algorithm (GA), have inherent limitations, and may result in less-accurate classification. In this paper, we introduce the immune-inspired clonal selection algorithm (CSA) to the maximum likelihood estimation of the Gaussian mixture model (GMM), and thus propose the GMM-CSA algorithm for automated voxel classification in brain MR images. This algorithm achieves simultaneous voxel classification and bias field correction in a three-stage iterative process under the CSA framework. At each iteration, a population of admissible model parameters, voxel labels and estimated bias field are updated. To explore the prior anatomical knowledge, we also construct a probabilistic brain atlas for each MR study and incorporate the atlas into the classification process. The GMM-CSA algorithm has been compared to five state-of-the-art brain MR image segmentation approaches on both simulated and clinical data. Our results show that the proposed algorithm is capable of classifying voxels in brain MR images into major tissue types more accurately.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 134, 25 June 2014, Pages 122–131
نویسندگان
, , ,