کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410048 679117 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A graph matching algorithm based on concavely regularized convex relaxation
ترجمه فارسی عنوان
یک الگوریتم تطبیق گراف براساس آرام سازی محدب بطور غلط تنظیم شده است
کلمات کلیدی
تطابق نمودار روش کانووا-محدب، تنظیم مقعدی الگوریتم فرانک وولف، آرامش محدب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper we propose a concavely regularized convex relaxation based graph matching algorithm. The graph matching problem is firstly formulated as a constrained convex quadratic program by relaxing the feasible set from the permutation matrices to doubly stochastic matrices. To gradually push the doubly stochastic matrix back to be a permutation one, an objective function is constructed by adding a simple weighted concave regularization to the convex relaxation. By gradually increasing the weight of the concave term, minimization of the objective function will gradually push the doubly stochastic matrix back to be a permutation one. A concave–convex procedure (CCCP) together with the Frank–Wolfe algorithm is adopted to minimize the objective function. The algorithm can be used on any types of graphs and exhibits a comparable performance as the PATH following algorithm, a state-of-the-art graph matching algorithm but applicable only on undirected graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 134, 25 June 2014, Pages 140–148
نویسندگان
, , , ,