کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410157 679127 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of complexity indices for classification problems: Cancer gene expression data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Analysis of complexity indices for classification problems: Cancer gene expression data
چکیده انگلیسی

Currently, cancer diagnosis at a molecular level has been made possible through the analysis of gene expression data. More specifically, one usually uses machine learning (ML) techniques to build, from cancer gene expression data, automatic diagnosis models (classifiers). Cancer gene expression data often present some characteristics that can have a negative impact in the generalization ability of the classifiers generated. Some of these properties are data sparsity and an unbalanced class distribution. We investigate the results of a set of indices able to extract the intrinsic complexity information from the data. Such measures can be used to analyze, among other things, which particular characteristics of cancer gene expression data mostly impact the prediction ability of support vector machine classifiers. In this context, we also show that, by applying a proper feature selection procedure to the data, one can reduce the influence of those characteristics in the error rates of the classifiers induced.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 75, Issue 1, 1 January 2012, Pages 33–42
نویسندگان
, , , ,