کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410215 679132 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards using covariance matrix pyramids as salient point descriptors in 3D point clouds
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Towards using covariance matrix pyramids as salient point descriptors in 3D point clouds
چکیده انگلیسی

In this work, a novel salient point descriptor for 3D point clouds, called Covariance Matrix Pyramids (CMPs), is presented. With CMPs it is possible to compare unstructured and unequal numbers of points which is an important characteristic when working with point clouds. Corresponding points from different scans are matched in a pyramidal approach combined with Particle Swarm Optimization. The flexibility of CMPs is demonstrated on the basis of several databases with objects, such as 3D faces, 3D apples, 3D kitchen scenes, 3D human–machine interaction gesture sequences, and 3D buildings all recorded with different 3D sensors. Quantitative results are given and compared with other state-of-the-art descriptors, whereby CMPs show promising performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 120, 23 November 2013, Pages 101–112
نویسندگان
, , , , ,