کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410384 | 679140 | 2010 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Kernel based gene expression pattern discovery and its application on cancer classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Association rules have been widely used in gene expression data analysis. However, there is no systematical way to select interesting rules from the millions of rules generated from high dimensional gene expression data. In this study, a kernel density estimation based measurement is proposed to evaluate the interestingness of the association rules. Several pruning strategies are also devised to efficiently discover the approximate top-k interesting patterns. Finally, over-fitting problem of the classification model is addressed by using conditional independence test to eliminate redundant rules. Experimental results show the effectiveness of the proposed interestingness measure and classification model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 13–15, August 2010, Pages 2562–2570
Journal: Neurocomputing - Volume 73, Issues 13–15, August 2010, Pages 2562–2570
نویسندگان
Ruichu Cai, Zhifeng Hao, Wen Wen, Han Huang,