کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410432 | 679146 | 2009 | 11 صفحه PDF | دانلود رایگان |

Facing the complicated non-linear nature of risk evolutions, current risk measurement approaches offer insufficient explanatory power and limited performance. Thus this paper proposes wavelet decomposed non-linear ensemble value at risk (WDNEVaR), a novel semi-parametric paradigm, incorporating both, wavelet analysis and artificial neural network technique to further improve the modeling accuracy and reliability. Wavelet analysis is utilized to capture the multi-scale data characteristics across scales while artificial neural network technique is utilized to reduce estimation biases following non-linear ensemble algorithms. Experiment results in three major markets suggest that the proposed WDNEVaR is superior to more traditional approaches as it provides value at risk (VaR) estimates at higher reliability and accuracy.
Journal: Neurocomputing - Volume 72, Issues 16–18, October 2009, Pages 3428–3438