کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410516 | 679149 | 2009 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fuzzy lattice reasoning (FLR) type neural computation for weighted graph partitioning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The fuzzy lattice reasoning (FLR) neural network was introduced lately based on an inclusion measure function. This work presents a novel FLR extension, namely agglomerative similarity measure FLR, or asmFLR for short, for clustering based on a similarity measure function, the latter (function) may also be based on a metric. We demonstrate application in a metric space emerging from a weighted graph towards partitioning it. The asmFLR compares favorably with four alternative graph-clustering algorithms from the literature in a series of computational experiments on artificial data. In addition, our work introduces a novel index for the quality of clustering, which (index) compares favorably with two popular indices from the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 72, Issues 10–12, June 2009, Pages 2121–2133
Journal: Neurocomputing - Volume 72, Issues 10–12, June 2009, Pages 2121–2133
نویسندگان
Vassilis G. Kaburlasos, Lefteris Moussiades, Athena Vakali,