کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410728 679162 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameterized cross-validation for nonlinear regression models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Parameterized cross-validation for nonlinear regression models
چکیده انگلیسی

This paper presents a new method of cross-validation (CV) for nonlinear regression problems. In the conventional CV methods, a validation set, that is, a part of training data is used to check the performance of learning. As a result, the trained regression models cannot utilize the whole training data and obtain the less performance than the expected for the given training data. In this context, we consider to construct the performance prediction model using the validation set to determine the optimal structure for the whole training data. We analyze risk bounds using the VC dimension theory and suggest a parameterized form of risk estimates for the performance prediction model. As a result, we can estimate the optimal structure for the whole training data using the suggested CV method referred to as the parameterize CV (p-CV) method. Through the simulation for function approximation, we have shown the effectiveness of our approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3089–3095
نویسندگان
, , ,