کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410737 | 679162 | 2008 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural networks approaches for discovering the learnable correlation between gene function and gene expression in mouse
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Identifying gene function has many useful applications. Identifying gene function based on gene expression data is much easier in prokaryotes than eukaryotes due to the relatively simple structure of prokaryotes. Recent studies have shown that there is a strong learnable correlation between gene function and gene expression. In previous work, we presented novel clustering and neural network (NN) approaches for predicting mouse gene functions from gene expression. In this paper, we build on that work to significantly improve the clustering distribution and the network prediction error by using a different clustering algorithm along with a new NN training technique. Our results show that NNs can be extremely useful in this area. We present the improved results along with comparisons.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 16â18, October 2008, Pages 3168-3175
Journal: Neurocomputing - Volume 71, Issues 16â18, October 2008, Pages 3168-3175
نویسندگان
Emad A.M. Andrews, Quaid Morris, Anthony J. Bonner,