کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410780 | 679162 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Recurrent neural network model for computing largest and smallest generalized eigenvalue
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A continuous recurrent neural network model is presented for computing the largest and smallest generalized eigenvalue of a symmetric positive pair (A,B)(A,B). Convergence properties to the extremum eigenvalues based upon Liapunov functional with the help of the generalized eigen-decomposition theorem is obtained. Compared with other existing models, this model is also suitable for computing the smallest generalized eigenvalue simply by replacing A by -A-A as well as maintaining invariant norm property. Numerical simulation further shows the effectiveness of the proposed model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3589–3594
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3589–3594
نویسندگان
Lijun Liu, Hongmei Shao, Dong Nan,