کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410780 679162 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recurrent neural network model for computing largest and smallest generalized eigenvalue
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Recurrent neural network model for computing largest and smallest generalized eigenvalue
چکیده انگلیسی

A continuous recurrent neural network model is presented for computing the largest and smallest generalized eigenvalue of a symmetric positive pair (A,B)(A,B). Convergence properties to the extremum eigenvalues based upon Liapunov functional with the help of the generalized eigen-decomposition theorem is obtained. Compared with other existing models, this model is also suitable for computing the smallest generalized eigenvalue simply by replacing A   by -A-A as well as maintaining invariant norm property. Numerical simulation further shows the effectiveness of the proposed model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 16–18, October 2008, Pages 3589–3594
نویسندگان
, , ,