کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410782 | 679162 | 2008 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Direct simplification for kernel regression machines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Kernel machines have been widely used in learning. However, standard algorithms are often time consuming. To this end, we propose a new method, direct simplification (DS) for imposing the sparsity of kernel regression machines. Different to the existing sparse methods, DS performs approximation and optimization in a unified framework by incrementally finding a set of basis functions that minimizes the primal risk function directly. The main advantage of our method lies in its ability to form very good approximations for kernel regression machines with a clear control on the computation complexity as well as the training time. Experiments on two real time series and two benchmarks assess the feasibility of our method and show that DS can obtain better performance with fewer bases compared with two-step-type sparse method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 71, Issues 16â18, October 2008, Pages 3602-3606
Journal: Neurocomputing - Volume 71, Issues 16â18, October 2008, Pages 3602-3606
نویسندگان
Wenwu He, Zhizhong Wang,