کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
410865 | 679167 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Maximal Discrepancy for Support Vector Machines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Maximal Discrepancy (MD) is a powerful statistical method, which has been proposed for model selection and error estimation in classification problems. This approach is particularly attractive when dealing with small sample problems, since it avoids the use of a separate validation set. Unfortunately, the MD method requires a bounded loss function, which is usually avoided by most learning algorithms, including the Support Vector Machine (SVM), because it gives rise to a non-convex optimization problem. We derive in this work a new approach for rigorously applying the MD technique to the error estimation of the SVM and, at the same time, preserving the original SVM framework.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 9, April 2011, Pages 1436–1443
Journal: Neurocomputing - Volume 74, Issue 9, April 2011, Pages 1436–1443
نویسندگان
Davide Anguita, Alessandro Ghio, Sandro Ridella,