کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410865 679167 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximal Discrepancy for Support Vector Machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Maximal Discrepancy for Support Vector Machines
چکیده انگلیسی

The Maximal Discrepancy (MD) is a powerful statistical method, which has been proposed for model selection and error estimation in classification problems. This approach is particularly attractive when dealing with small sample problems, since it avoids the use of a separate validation set. Unfortunately, the MD method requires a bounded loss function, which is usually avoided by most learning algorithms, including the Support Vector Machine (SVM), because it gives rise to a non-convex optimization problem. We derive in this work a new approach for rigorously applying the MD technique to the error estimation of the SVM and, at the same time, preserving the original SVM framework.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 9, April 2011, Pages 1436–1443
نویسندگان
, , ,