کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410886 679170 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Developing parallel sequential minimal optimization for fast training support vector machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Developing parallel sequential minimal optimization for fast training support vector machine
چکیده انگلیسی

A parallel version of sequential minimal optimization (SMO) is developed in this paper for fast training support vector machine (SVM). Up to now, SMO is one popular algorithm for training SVM, but it still requires a large amount of computation time for solving large size problems. The parallel SMO is developed based on message passing interface (MPI). Unlike the sequential SMO which handle all the training data points using one CPU processor, the parallel SMO first partitions the entire training data set into smaller subsets and then simultaneously runs multiple CPU processors to deal with each of the partitioned data sets. Experiments show that there is great speedup on the adult data set, the MNIST data set and IDEVAL data set when many processors are used. There are also satisfactory results on the Web data set. This work is very useful for the research where multiple CPU processors machine is available.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 1–3, December 2006, Pages 93–104
نویسندگان
, , , , , ,