کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411566 679573 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probabilistic frequency-domain discrete wavelet transform for better detection of bearing faults in induction motors
ترجمه فارسی عنوان
تبدیل موجک گسسته فرکانس احتمالی برای تشخیص بهتر گسل های تحمل در موتورهای القایی
کلمات کلیدی
تبدیل موجک گسسته فرکانس دامنه، تشخیص گسل، گسل های نژاد درونی / بیرونی، مدل سازی مونت کارلو، مدل سازی تصادفی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Due to the importance of induction motors’ continuous operation, early detection of faults has become a major trend. As reported in an IEEE study, bearing failures include more than half of mechanical faults. To detect existence of this fault, methods such as (short-time) Fourier, (continuous–discrete) wavelet, and Park transforms introduced. Static modeling of fault behavior is determined to be the major deficiency of above-mentioned methods. In other words, using conventional detection techniques, fault is assumed to have deterministic behavior, in which the fault frequencies are constant. As a matter of fact, fault characteristics can be affected under loading or environmental conditions, which makes conventional standing invalid. Authors of this paper have developed their previously introduced technique, frequency-domain discrete wavelet transform (FD-DWT) into a stochastic model. This makes the detection process valid for more variety of fault conditions and leads to earlier detection of fault and less damage to motor compared to other strategies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 188, 5 May 2016, Pages 206–216
نویسندگان
, ,