کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
411666 | 679583 | 2016 | 10 صفحه PDF | دانلود رایگان |
In this paper, we propose a novel feature type, namely Motion Binary Pattern (MBP) and different computation strategies for the well-known Volume Local Binary Pattern (VLBP). MBPs are a combination of VLBPs and Optical Flow. By combining the benefit of both methods, a simple and efficient descriptor is constructed. Motion Binary Patterns are computed in the spatio-temporal domain while the motion in consecutive frames is described. Finally, a feature descriptor is constructed by a histogram computation. Volume Local Binary Patterns are a feature type to describe object characteristics in the spatio-temporal domain. But apart from the computation of such a pattern further steps are required to create a discriminative feature. These steps are evaluated in detail and the best strategy is shown. For MBPs and VLBPs, a Random Forest classifier is learned and applied to the task of human action recognition. The proposed novel feature type and VLBPs are evaluated on the well-known, publicly available KTH dataset, Weizman dataset and on the IXMAS dataset for multi-view action recognition. The results demonstrate challenging accuracies in comparison to state-of-the-art methods.
Journal: Neurocomputing - Volume 173, Part 1, 15 January 2016, Pages 54–63