کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411954 679598 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Indefinite kernel ridge regression and its application on QSAR modelling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Indefinite kernel ridge regression and its application on QSAR modelling
چکیده انگلیسی

Recently, the use of indefinite kernels in machine learning has attracted numerous attentions. However most works are focused on the classification techniques and less are devoted to regression models. In this paper to adapt indefinite kernels to ridge regression model, an indefinite kernel ridge regression model is proposed. Instead of performing spectral transformation on the kernel matrix, a less restrictive semi-definite proxy kernel can be constructed to approximate the kernel which normally is positive semi-definite. The sensitivity of the distance between this indefinite kernel and the proxy kernel is controlled by a parameter ρ.This approach allows one to construct regression models of response values based on the similarities of corresponding objects, where the requirement on similarity measures to satisfy Mercers condition can be relaxed. To illustrate the use of this algorithm, it was applied to the quantitative structure-activity relationship (QSAR) modelling over 16 drug targets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 158, 22 June 2015, Pages 127–133
نویسندگان
, , ,