کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412604 679657 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel text mining approach to financial time series forecasting
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A novel text mining approach to financial time series forecasting
چکیده انگلیسی

Financial time series forecasting has become a challenge because it is noisy, non-stationary and chaotic. Most of the existing forecasting models for this problem do not take market sentiment into consideration. To overcome this limitation, motivated by the fact that market sentiment contains some useful forecasting information, this paper uses textual information to aid the financial time series forecasting and presents a novel text mining approach via combining ARIMA and SVR (Support Vector Regression) to forecasting. The approach contains three steps: representing textual data as feature vectors, using ARIMA to analyze the linear part and developing a SVR model based only on textual feature vector to model the nonlinear part. To verify the effectiveness of the proposed approach, quarterly ROEs (Return of Equity) of six security companies are chosen as the forecasting targets. Comparing with some existing state-of-the-art models, the proposed approach gives superior results. It indicates that the proposed model that uses additional market sentiment provides a promising alternative to financial time series prediction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 83, 15 April 2012, Pages 136–145
نویسندگان
, , ,