کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412614 679657 2012 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Denoising MMW image using the combination method of contourlet and KSC shrinkage
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Denoising MMW image using the combination method of contourlet and KSC shrinkage
چکیده انگلیسی

A new denoising method of milli-meter wave (MMW) image using contourlet and kurtosis based sparse coding (KSC) is proposed in this paper. KSC is a high-order statistical method and can efficiently extract image feature coefficients. Contourlet method has the decomposition property of orientation and the energy variation for images. Further, using the shrinkage threshold that is determined by the sparse prior distribution of feature coefficients extracted in the contourlet transform field, the unknown noise contained in MMW image can be reduced efficiently. In test, an artificial MMW image and a true MMW are respectively used to validate our method, further, compared this method with other denoising methods, the simulation results show this method proposed here can obtain the better quality of image restoration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 83, 15 April 2012, Pages 229–233
نویسندگان
, , ,