کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412722 679678 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constructive hidden nodes selection of extreme learning machine for regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Constructive hidden nodes selection of extreme learning machine for regression
چکیده انگلیسی

In this paper, we attempt to address the architectural design of ELM regressor by applying a constructive method on the basis of ELM algorithm. After the nonlinearities of ELM network are fixed by randomly generating the parameters, the network will correspond to a linear regression model. The selection of hidden nodes can then be regarded as a subset model selection in linear regression. The proposed constructive hidden nodes selection for ELM (referred to as CS-ELM) selects the optimal number of hidden nodes when the unbiased risk estimation based criterion CP reaches the minimum value. A comparison of the proposed CS-ELM with other model selection algorithms of ELM is evaluated on several real benchmark regression applications. And the empirical study shows that CS-ELM leads to a compact network structure automatically.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 16–18, October 2010, Pages 3191–3199
نویسندگان
, , ,