کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412823 679683 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy
چکیده انگلیسی

We evaluate the prediction accuracy of models designed using different classification methods depending on the technique used to select variables, and we study the relationship between the structure of the models and their ability to correctly predict financial failure. We show that a neural network based model using a set of variables selected with a criterion that it is adapted to the network leads to better results than a set chosen with criteria used in the financial literature. We also show that the way in which a set of variables may represent the financial profiles of healthy companies plays a role in Type I error reduction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 10–12, June 2010, Pages 2047–2060
نویسندگان
,