کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412889 679688 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach
چکیده انگلیسی

This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 7–9, March 2010, Pages 1142–1163
نویسندگان
, ,