کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
413941 680752 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes
ترجمه فارسی عنوان
محلی سازی، برنامه ریزی اجتناب از مانع و کنترل یک روبات موازی کابل مشترک برای چندین جرثقیل متحرک
کلمات کلیدی
روبات متحرک کابل موازی، جرثقیل چند جانبه، بومی سازی، برنامه ریزی اجتناب از موانع، کنترل سطح کشویی اتوماتیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Cable parallel robots for multiple mobile cranes are designed.
• Localization analysis of the robots are reported.
• Obstacle avoidance planning and automatic leveling control are performed.
• Illustrative simulation studies highlight the performance of the robots.

This paper addresses the cooperative problems in terms of localization, obstacle avoidance planning and automatic leveling control for a cable parallel robot for multiple mobile cranes (CPRMCs). The design model of the CPRMCs is elaborated on. The three-dimensional grid map method is utilized to plot the environment map based on the operation environment model. By combining the relative localization method with the absolute localization method, a cooperative localization scheme of the CPRMCs is developed, and an improved localization algorithm is designed on the basis of multilateration method. Then, according to the grid-based artificial potential field method, a global path planning of the CPRMCs is performed. Considering the possible collision of the single mobile crane, the sensor technology is applied to the cooperative obstacle avoidance. In addition, a four-point collaborative leveling method is adopted for automatic leveling control of the platform of the CPRMCs. Finally, the effectiveness of the CPRMCs system is verified through simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Computer-Integrated Manufacturing - Volume 34, August 2015, Pages 105–123
نویسندگان
, , ,