کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415007 681151 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors
چکیده انگلیسی

High-dimensional data pose challenges in statistical learning and modeling. Sometimes the predictors can be naturally grouped where pursuing the between-group sparsity is desired. Collinearity may occur in real-world high-dimensional applications where the popular l1l1 technique suffers from both selection inconsistency and prediction inaccuracy. Moreover, the problems of interest often go beyond Gaussian models. To meet these challenges, nonconvex penalized generalized linear models with grouped predictors are investigated and a simple-to-implement algorithm is proposed for computation. A rigorous theoretical result guarantees its convergence and provides tight preliminary scaling. This framework allows for grouped predictors and nonconvex penalties, including the discrete l0l0 and the ‘l0+l2l0+l2’ type penalties. Penalty design and parameter tuning for nonconvex penalties are examined. Applications of super-resolution spectrum estimation in signal processing and cancer classification with joint gene selection in bioinformatics show the performance improvement by nonconvex penalized estimation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 10, October 2012, Pages 2976–2990
نویسندگان
,