کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
415366 681202 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
LogitBoost with errors-in-variables
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
LogitBoost with errors-in-variables
چکیده انگلیسی

The logistic regression model is a popular tool for relating a binary outcome to a set of covariates. In many applications, the covariates of this model are measured with error. An approach to nonparametric logistic regression with covariate measurement error is presented. The estimate of the log-odds is formed using boosted regression trees. The algorithm uses gradient boosting to fit the trees, and their coefficients are determined using an estimating equation closely related to the likelihood score function. The method is examined using simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 5, 20 January 2008, Pages 2549–2559
نویسندگان
, ,