کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4337645 | 1614802 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neuroplasticity of prehensile neural networks after quadriplegia
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
SAMERSERDSpinal cord injury - آسیب نخاعیMRI - امآرآی یا تصویرسازی تشدید مغناطیسیMEG - بهMotor imagery - تصورات حرکتیMagnetic resonance imaging - تصویربرداری رزونانس مغناطیسیRehabilitation - توانبخشیmovement time - زمان حرکتsci - علمیmovement variability - متغیر حرکتSynthetic aperture magnetometry - مغناطیس سنج دیافراگم مصنوعیmagnetoencephalography - مغناطیس مغزevent-related desynchronization - ناسازگاری مربوط به رویدادevent-related synchronization - همزمان سازی مرتبط با رویدادCortical plasticity - پلاستیک کرمی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Targeting cortical neuroplasticity through rehabilitation-based practice is believed to enhance functional recovery after spinal cord injury (SCI). While prehensile performance is severely disturbed after C6-C7 SCI, subjects with tetraplegia can learn a compensatory passive prehension using the tenodesis effect. During tenodesis, an active wrist extension triggers a passive flexion of the fingers allowing grasping. We investigated whether motor imagery training could promote activity-dependent neuroplasticity and improve prehensile tenodesis performance. SCI participants (n = 6) and healthy participants (HP, n = 6) took part in a repeated measurement design. After an extended baseline period of 3 weeks including repeated magnetoencephalography (MEG) measurements, MI training was embedded within the classical course of physiotherapy for 5 additional weeks (three sessions per week). An immediate MEG post-test and a follow-up at 2 months were performed. Before MI training, compensatory activations and recruitment of deafferented cortical regions characterized the cortical activity during actual and imagined prehension in SCI participants. After MI training, MEG data yielded reduced compensatory activations. Cortical recruitment became similar to that in HP. Behavioral analysis evidenced decreased movement variability suggesting motor learning of tenodesis. Data suggest that MI training participated to reverse compensatory neuroplasticity in SCI participants, and promoted the integration of new upper limb prehensile coordination in the neural networks functionally dedicated to the control of healthy prehension before injury.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 274, 22 August 2014, Pages 82-92
Journal: Neuroscience - Volume 274, 22 August 2014, Pages 82-92
نویسندگان
F. Di Rienzo, A. Guillot, S. Mateo, S. Daligault, C. Delpuech, G. Rode, C. Collet,