کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4339779 1614906 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bright light produces Fos-positive neurons in caudal trigeminal brainstem
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Bright light produces Fos-positive neurons in caudal trigeminal brainstem
چکیده انگلیسی
Excessive discomfort after exposure to bright light often occurs after ocular injury and during headache. Although the trigeminal nerve is necessary for light-evoked discomfort, the mechanisms underlying this phenomenon, often referred to generally as photophobia, are not well defined. Quantitative Fos-like immunoreactivity (Fos-LI) was used to determine the pattern of neuronal activation in the caudal brainstem after bright light stimulation and, secondly, whether a neurovascular mechanism within the eye contributes to this response. Under barbiturate anesthesia, male rats were exposed to low (1×104 lx) or high intensity (2×104 lx) light delivered from a thermal neutral source for 30 min (30 s ON, 30 s OFF) and allowed to survive for 90 min. Intensity-dependent increases in Fos-LI were seen in laminae I-II at the trigeminal caudalis/cervical cord junction region (Vc/C1) and nucleus tractus solitarius (NTS). Fos-LI also increased at the trigeminal interpolaris/caudalis transition (Vi/Vcvl) and dorsal paratrigeminal (dPa5) regions independent of intensity. Intravitreal injection of norepinephrine greatly reduced light-evoked Fos-LI at the Vc/C1, dPa5 and NTS, but not at the Vi/Vc transition. Lidocaine applied to the ocular surface had no effect on Fos-LI produced in trigeminal brainstem regions. These results suggested that multiple regions of the caudal trigeminal brainstem complex integrate light-related sensory information. Fos-LI produced at the dPa5 and NTS, coupled with norepinephrine-induced inhibition, was consistent with the hypothesis that light-evoked activation of trigeminal brainstem neurons involves an intraocular neurovascular mechanism with little contribution from neurons that supply the ocular surface.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 160, Issue 4, 2 June 2009, Pages 858-864
نویسندگان
, , , , ,