کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4341500 1295838 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nerve growth factor, glial cell line–derived neurotrophic factor and neurturin prevent semaphorin 3A–mediated growth cone collapse in adult sensory neurons
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Nerve growth factor, glial cell line–derived neurotrophic factor and neurturin prevent semaphorin 3A–mediated growth cone collapse in adult sensory neurons
چکیده انگلیسی

Developmentally, semaphorin 3A (sema3A) is an important chemorepellent that guides centrally projecting axons of dorsal root ganglion (DRG) neurons. Sema3A-mediated growth cone collapse can be prevented by cyclic GMP (cGMP) and nerve growth factor (NGF) in embryonic neurons. Sema3A may also play a role in directing regrowth of injured axons in adults, and interactions with neurotrophic factors near the injury site may determine the extent and targeting of both regenerative and aberrant growth. The aim of this study was to determine whether NGF, glial cell line–derived neurotrophic factor (GDNF) and neurturin (NTN) modulate sema3A-mediated growth cone collapse in cultured adult rat DRG neurons. Sema3A caused a significant increase in growth cone collapse, which was completely prevented by prior treatment with NGF, GDNF or NTN. Immunocytochemical experiments showed that sema3A-sensitive neurons were heterogeneous in their expression of neurotrophic factor receptors and responses to neurotrophic factors, raising the possibility of novel, convergent signaling mechanisms between these substances. Increasing cGMP levels caused growth cone collapse, whereas sema3A-mediated collapse was prevented by inhibition of guanylate cyclase or by increasing cyclic AMP levels. In conclusion, sema3A signaling pathways in adult neurons differ to those described in embryonic neurons. Three different neurotrophic factors each completely prevent sema3A-mediated collapse, raising the possibility of novel converging signaling pathways. These studies also show that there is considerable potential for neurotrophic factors to regulate sema3A actions in the adult nervous system. This may provide insights into the mechanisms underling misdirected growth and targeting of sensory fibers within the spinal cord after injury, that is thought to contribute to development of autonomic dysreflexia and neuropathic pain.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 142, Issue 2, 13 October 2006, Pages 369–379
نویسندگان
, ,