کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
434340 689719 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hardness and inapproximability of convex recoloring problems
ترجمه فارسی عنوان
سختی و عدم دسترسی به مشکلات مجدد محدب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Given a graph with an arbitrary vertex coloring, the Convex Recoloring Problem (CR) consists in recoloring the minimum number of vertices so that each color induces a connected subgraph. We focus on the complexity and inapproximability of this problem on k  -colored graphs, for fixed k⩾2k⩾2. We prove a strong complexity result showing that, for each k⩾2k⩾2, CR is already NP-hard on k  -colored grids, and therefore also on planar graphs with maximum degree 4. For each k⩾2k⩾2, we prove that, for a positive constant c  , there is no clnn-approximation algorithm for k-colored n  -vertex (bipartite) graphs, unless P=NPP=NP. We also prove that CR parameterized by the number of color changes is W[2]W[2]-hard. For 2-colored (q,q−4)(q,q−4)-graphs, a class that includes cographs and P4P4-sparse graphs, we present linear-time algorithms for fixed q. The same complexity and inapproximability results are obtained for two relaxations of the problem, where only one fixed color or any color is required to induce a connected subgraph, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 533, 8 May 2014, Pages 15–25
نویسندگان
, , , ,