کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4344023 1615149 2013 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neural connectivity of the posterior body of the fornix in the human brain: Diffusion tensor imaging study
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Neural connectivity of the posterior body of the fornix in the human brain: Diffusion tensor imaging study
چکیده انگلیسی
Little is known about the neural connectivity of the fornix in the human brain. In the current study, using diffusion tensor imaging, we attempted to investigate the neural connectivity of the posterior body of the fornix in the normal human brain. A total of 43 healthy subjects were recruited for this study. DTIs were acquired using a sensitivity-encoding head coil at 1.5 T. For connectivity of the posterior body of the fornix, a seed region of interest was used on the posterior body of the fornix. Connectivity was defined as the incidence of connection between the posterior body of the fornix and any neural structure of the brain at the threshold of 5, 25, and 50 streamline. At the threshold of 5, 25, and 50, the posterior body of the fornix showed connectivity to the precentral gyrus (37%, 19%, and 15%), the postcentral gyrus (25%, 11.5%, and 7%), the posterior parietal cortex (16.5%, 5%, and 5%), the brainstem (12%, 4.5%, and 3.5%), the crus of the fornix (34%, 10.5%, and 7%), the contralateral splenium of the corpus callosum (12.5%, 5%, and 0%), and the ipsilateral splenium of the CC (69.8%%, 33.7%, and 23.3%), respectively. Findings of this study showed that the posterior body of the fornix had connectivity with the cerebral cortex, the brainstem, the fornical crus, and the contralateral splenium through the splenium of the corpus callosum in normal subjects. We believe that the results of this study would be helpful in investigation of the neural network related to memory and recovery mechanisms following fornical injury in the human brain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience Letters - Volume 549, 9 August 2013, Pages 116-119
نویسندگان
, ,