کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
434688 689779 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the sensitivity complexity of bipartite graph properties
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On the sensitivity complexity of bipartite graph properties
چکیده انگلیسی

Sensitivity complexity, introduced by Cook, Dwork, and Reischuk (1982, 1986) in [2] and [3], is an important complexity measure of Boolean functions. Turán (1984) [7] initiated the study of sensitivity complexity for graph properties. He conjectured that for any non-trivial graph property on nn vertices, the sensitivity complexity is at least n−1n−1. He proved that it is greater than n/4n/4 in his paper. Wegener (1985) [8] verified this conjecture for all monotone graph properties. Recently Sun (2011) [6] improved the lower bound to 617n for general graph properties. We follow their steps and investigate the sensitivity complexity of bipartite graph properties. In this paper we propose the following conjecture about the sensitivity of bipartite graph properties, which can be considered as the bipartite analogue of Turán’s conjecture: for any non-trivial n×mn×m bipartite graph property ff, s(f)≥max{⌈n+1m+1m⌉,⌈m+1n+1n⌉}. We prove this conjecture for all n×2n×2 bipartite graph properties. For general n×mn×m bipartite graph properties, we show a max{⌈n/2⌉,⌈m/2⌉}max{⌈n/2⌉,⌈m/2⌉} lower bound. We also prove this conjecture when the bipartite graph property can be written as a composite function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 468, 14 January 2013, Pages 83–91
نویسندگان
, , , ,