کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4351147 1615196 2006 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Striatal cell signaling in chronically food-restricted rats under basal conditions and in response to brief handling
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Striatal cell signaling in chronically food-restricted rats under basal conditions and in response to brief handling
چکیده انگلیسی

Chronic food restriction increases exploratory behavior, cognitive function, and the rewarding effects of abused drugs. Recently, striatal neuroadaptations that may be involved in these effects were observed. Specifically, D-1 dopamine (DA) receptor agonist challenge produced stronger activation of extracellular signal-regulated kinase (ERK), calcium-calmodulin-dependent kinase II (CaMKII), and the nuclear transcription factor cAMP response element binding protein (CREB) in nucleus accumbens (NAc) of food-restricted (FR) relative to ad libitum fed (AL) rats. Further, when FR rats were injected intracerebroventricularly (i.c.v.) with vehicle (saline) they displayed stronger activation of c-Jun N-terminal protein kinase (JNK), ERK and CaMKII than did AL rats. It is not known to what extent the latter effects represent the basal state of FR rats or an amplified response to the brief handling involved in the i.c.v. injection procedure. Using Western blotting it was found that basal phospho-JNK is higher in caudate-putamen (CPu) and NAc of FR relative to AL rats. Interestingly, brief handling decreased phospho-JNK levels in FR subjects. Basal phospho-ERK1/2 also tended to be elevated in CPu and NAc of FR rats but the elevation was not significant. However, phospho-MEK—the activated kinase upstream of ERK1/2—was significantly elevated in NAc of FR rats. Neither ERK1/2 nor MEK were activated by brief handling. CaMKII was selectively activated by handling in NAc of FR rats, suggesting a state-dependent response to a salient event. Given the established involvement of mitogen-activated protein kinase (MAPK) and CaMKII in synaptic plasticity, learning and memory, the increase in basal phospho-MEK and hyperresponsiveness of CaMKII in NAc may represent adaptive cellular responses to persistent negative energy balance that facilitate associative learning in connection with food-seeking.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience Letters - Volume 393, Issues 2–3, 30 January 2006, Pages 243–248
نویسندگان
, , ,