کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4355241 1615603 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی سیستم های حسی
پیش نمایش صفحه اول مقاله
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration
چکیده انگلیسی

The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.


► Recent models show cells in the postnatal cochlea can give rise to new hair cells.
► Aging decreases the ability to induce cochlear cell proliferation/differentiation.
► Many postnatal changes that might dampen cochlear regeneration are described.
► Many effectors of age-related senescence in other systems are also described.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Hearing Research - Volume 297, March 2013, Pages 68–83
نویسندگان
, ,