کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4364806 | 1301725 | 2014 | 13 صفحه PDF | دانلود رایگان |
• Environmentally friendly methods with potential for enhanced oil recovery are reviewed.
• High bacteria and archaea diversity responsible for multifunctional oil reservoir modification.
• Relatively cost effective method for petroleum biorefining.
• Limited niche industrial scale implementation of biotechnology due to economics and variability of process.
• Potential biocatalyst application in petroleum purification identified.
A significant quantum of crude oil is trapped in reservoirs and often unrecoverable by conventional oil recovery methods. Further downstream, the petroleum industry is facing challenges to remove sulfur, metal, nitrogen as well as undesirable organic compounds from the crude.Conventional secondary recovery methods such as water and gas injections helped to increase the productivity of the well, while chemical and physical refinery processes such as hydrodesulfurization, desalting, and high-pressure high-temperature hydrotreating remove most inorganic impurities. The increasing demand for oil in the world coupled with very stringent environmental laws piled economical and technical pressure upon the refinery industry to further improve crude oil recovery as well as reduce sulfur, metal and nitrogen concentration to the low ppm levels.In the search for economical and environmentally friendly solutions, growing attention has been given to biotechnology such as the use of microbial enhanced oil recovery (MEOR). MEOR is an alternate recovery method that uses microorganisms and their metabolic products. In addition, the emerging field of crude oil refining and associated industrial processes such as biodesulfurization, biodemetallation, biodenitrogenation and biotransformation are also covered.This review aims to provide an overview on MEOR and biorefining relevant to the petroleum industry and highlights challenges that need to be overcome to become commercially successful. Literature pertaining to laboratory experiments, field trials and patents are included in view of industrial applications and further developments.
Journal: International Biodeterioration & Biodegradation - Volume 86, Part C, January 2014, Pages 225–237